PNAS:维也纳大学研究团队首次提出了橙酮合酶的晶体结构

摘要 : 2016年3月14日,国际著名学术期刊《PNAS》在线发表了维也纳大学生物物理化学系主任Annette Rompel研究团队的成果:“Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases ”。首次对橙酮合酶进行了描述并首次提出了橙酮合酶的晶体结构。

2016年3月14日,国际著名学术期刊《PNAS》在线发表了维也纳大学生物物理化学系主任Annette Rompel研究团队的成果:“Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases ”。首次对橙酮合酶进行了描述并首次提出了橙酮合酶的晶体结构。

我们都知道,切开的苹果或烂熟的水果会褐变。Annette Rompel对这个现象非常了解。20多年来,她一直在研究酪氨酸酶,这种酶不仅存在于植物中,而且还会使人的皮肤变成棕色。

这种“褐化”是由多种复杂的多酚物质引起的。这些是植物次生代谢产物,是具有保健功能的色素和香味成分。反过来,酪氨酸酶是一种含金属的酶,可催化酚类化合物的羟基化和氧化。化学家解释说,这就是变色的原因。

除了酪氨酸酶之外,另一酶——称为儿茶酚氧化酶,能够氧化联苯酚,例如邻苯二酚。Rompel说:“因此,这两种酶都会引起褐变反应。”第一作者Christian Molitor指出:“这些酶在各种细胞中及其天然底物的实际生理作用,仍是未知的。”

现在,化学家们已经解决了这个问题。研究人员在蘑菇和核桃叶中成功地描绘了这些酶之后,他们现在开始关注另外一种植物:波斯菊——一种流行的园林植物,它们的花就像向日葵那样的灿烂黄色。

研究人员表示:“我们选择波斯菊进行研究,是因为‘褐变酶’以很高的浓度存在于花瓣中。”这种酶——儿茶酚氧化酶,负责某些花色素的转换。研究人员解释说:“因为花瓣染料被称为橙酮,这种酶就被称为橙酮合酶。”

在这篇论文中,研究人员首次对这种酶进行了描述并提出了橙酮合酶的晶体结构。本文第一作者Molitor补充说:“在第三步中,我们获得了一个无效形式(通过磺化)的分离和结晶。关于这种酶的潜在的、积极的和非积极形式,我们所获得的结果,为进一步深入了解复杂的激活机制,提供了见解。”

根据这项工作,研究人员还描述了植物多酚氧化酶催化循环的一种新机制,例如,植物中的“褐变过程”。Molitor指出:“我们的研究结果表明,酪氨酸酶和儿茶酚氧化酶的一般分类,必须加以重新考虑。”

这些研究结果,可能在各个学科领域有所应用,例如生物技术、医药和农业过程。Rompel解释说:“根据我们的结果,你可以通过控制这些酶,增加水果和蔬菜中生物活性物质的含量。水果和蔬菜会变得更健康。”

原文链接:

Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases

原文摘要:

Tyrosinases and catechol oxidases belong to the family of polyphenol oxidases (PPOs). Tyrosinases catalyze the o-hydroxylation and oxidation of phenolic compounds, whereas catechol oxidases were so far defined to lack the hydroxylation activity and catalyze solely the oxidation of o-diphenolic compounds. Aurone synthase from Coreopsis grandiflora (AUS1) is a specialized plant PPO involved in the anabolic pathway of aurones. We present, to our knowledge, the first crystal structures of a latent plant PPO, its mature active and inactive form, caused by a sulfation of a copper binding histidine. Analysis of the latent proenzyme’s interface between the shielding C-terminal domain and the main core provides insights into its activation mechanisms. As AUS1 did not accept common tyrosinase substrates (tyrosine and tyramine), the enzyme is classified as a catechol oxidase. However, AUS1 showed hydroxylase activity toward its natural substrate (isoliquiritigenin), revealing that the hydroxylase activity is not correlated with the acceptance of common tyrosinase substrates. Therefore, we propose that the hydroxylase reaction is a general functionality of PPOs. molecular dynamics simulations of docked substrate–enzyme complexes were performed, and a key residue was identified that influences the plant PPO’s acceptance or rejection of tyramine. Based on the evidenced hydroxylase activity and the interactions of specific residues with the substrates during the molecular dynamics simulations, a novel catalytic reaction mechanism for plant PPOs is proposed. The presented results strongly suggest that the physiological role of plant catechol oxidases were previously underestimated, as they might hydroxylate their—so far unknown—natural substrates in vivo.

DOI: 10.1073/pnas.1523575113

作者:Christian Molitor

;