PLOS Genetics:北京大学顾红雅研究组解析植物角质层发育的基因转
2016年1月8日,国际知名学术期刊《PLOS genetics》在线发表北京大学生命科学学院顾红雅研究组与中国科学院植物研究所曲乐庆研究组合作发表的一篇研究论文,研究揭示了植物角质层发育的基因转录调控的研究。李世博博士为论文第一作者,顾红雅教授为论文通讯作者。
演化学说认为现有的陆生植物都是原始的水生生物从水中登陆后演化的,在整个演化过程中,由于环境从水中到陆地上,细胞面临多重挑战(重力、水分流失、紫外线、细菌与真菌感染等。
角质层是植物地上器官上面一层疏水物质,主要由角质和蜡质组成。角质层的出现为陆生植物适应陆生生活提供了重要的帮助,因为角质层能保证植物细胞在陆生环境中保存水分不轻易流失,研究对植物细胞如何合成角质和蜡质的机制尚未清楚。
顾红雅研究组之前对水稻一个卷叶突变体curly flag leaf1的研究鉴定到一个参与角质层发育的新蛋白CFL1,水稻CFL1在拟南芥中同源基因AtCFL1通过与转录因子HDG1相互作用,调控角质层合成相关基因的转录从而调控角质层的发育(Wu etal.2011 The Plant Cell)。最近,研究人员通过遗传学和分子生物学的方法找到两个与AtCFL1相互作用的新bHLH转录因子CFLAP1和CFLAP2,在植物细胞中CFLAP1和CFLAP2过度表达均会导致角质层发育缺陷,产生器官融合与角质层完整性受损。而抑制CFLAP1和CFLAP2的活性则会产生相反的表现。研究人员通过高通量基因表达的分析,发现了在这些角质层发育缺陷的材料中参与蜡质和角质合成的基因均收到了明显的影响,进一步研究发现与之前发现的HDG1和新发现的转录因子CFLAP1/CFLAP2均与AtCFL1蛋白C端的一个保守的锌指结构与相互作用,而这个锌指结构域对于AtCFL1的功能至关重要,锌指结构域发生突变后会导致AtCFL1丧失与转录因子相互作用的能力,进而影响其正常功能。
研究表明了AtCFL1蛋白i调控角质层发育的蛋白,通过自身C端的锌指结构域,竞争性地与不同的转录因子相互作用,协同角质层发育的调控过程。
图A:CFLAP2均与AtCFL1在植物胞体内相互作用 图B:CFLAP2过量表达导致角质层发育缺陷 图C:AtCFL1与锌指结构域竞争性与不同转录因子结合调控角质层发育
原文链接:
CFLAP1 and CFLAP2 Are Two bHLH Transcription Factors Participating in Synergistic Regulation of AtCFL1-Mediated Cuticle Development in ArABIdopsis
原文摘要:
Neil Armstrong sent mankind leaping through the stars, but if a new robotic explorer makes it into space, we may soon be hopping instead. Called the Highland Terrain Hopper, or HOPTER, the vehicle will use hopping—instead of driving—to explore the surface of other planets. Most of this work is currently done by stationary lander platforms or wheeled rovers, which can travel many kilometers. Both have limitations: Landers cannot investigate areas beyond their immediate surroundings, and the more mobile rovers don’t work in ultra–low gravity environments, where their wheels won’t adhere to the ground (like on asteroids, comets, and the martian moons). Rovers are further limited by difficult-to-cross landscapes; this makes studying mountainous terrains challenging, depriving us of key insights into the geology of other planetary bodies. To solve these problems, a team of engineers and planetary geologists decided to design a vehicle with a very different form of locomotion-hopping. Hopping is a highly efficient way for robots to navigate around, through, and over obstacles far larger than themselves. Although the HOPTER is not the first exploration vehicle to hop—the Mars Reconnaissance Lander could make controlled ballistic jumps between flat terrains, for example—the HOPTER’s low center of mass, high maneuverability, and simple, robust design make it the ideal candidate for exploring uneven and mountainous terrain across a broad range of gravitational environments. The HOPTER is still in the design phase, but when it is built, it will feature a 70 cm–diameter reversible disc with three independently firing legs that can project it up to 4 meters into the air on a planet like Mars (see picture, above). With these legs, the HOPTER will be able to precisely navigate up and down steep rock slopes, recover from slips and falls, and even leap over obstacles many times its height. The platform’s relatively light weight means that several could be deployed simultaneously to explore the surface of a planet, allowing for everything from simple picture taking to complex, 3D geophysical surveys. The next step, researchers say, is to develop a working prototype—something they are already getting the bounce on.
DOI: 10.1371/journal.pgen.1005744
作者:顾红雅