微生物燃料电池的研究及应用
微生物燃料电池(Microbial Fuel Cell,MFC)是一种利用微生物将有机物中的化学能直接转化成电能的装置。其基本工作原理是:在阳极室厌氧环境下,有机物在微生物作用下分解并释放出电子和质子,电子依靠合适的电子传递介体在生物组分和阳极之间进行有效传递,并通过外电路传递到阴极形成电流,而质子通过质子交换膜传递到阴极,氧化剂(一般为氧气)在阴极得到电子被还原与质子结合成水。
一、作用原理
参与传递电子的介体与微生物和阳极之间的作用形式有三种:(1) 微生物将氧化还原反应产生的电子直接传递给溶解在溶液中的介体,介体再将电子传递给电极;(2)介体能进入到微生物体内,参加反应被还原,从微生物体内出来后再将电子传递给电极;(3) 微生物吸附在电极表面,它将反应产生的电子传递给在细胞表面的介体,再通过介体传递给电极。
二、研究目的和意义
目前,我国工业化进程发展迅速。在工业化快速推进过程中,对能源的需求和依赖日益增长。然而,目前支撑着工业和经济发展的化石燃料已经难以为继。因此,发展新能源和可再生能源,减少对国际石油市场的依赖,已经成为我国重要的战略性布局。微生物电池不仅用于产生清洁能源,还能净化污水。污水处理费时费钱还消耗大量能量,基本是个只投入不产出的行业,也是让各国政府头疼的一大难题。因此,又能净化水质,又能发电的微生物燃料电池一旦出现,将有望把污水处理变成一个有利可图的产业。微生物燃料电池(Microbial fuel cell, MFC)是一种以产电微生物为阳极催化剂将有机物中的化学能直接转化为电能的装置,在废水处理和新能源开发领域具有广阔的应用前景。虽然目前已发现很多产电微生物,如希瓦氏菌、地杆菌、克雷伯氏杆菌等,但这些菌种均只能在中性条件下产电。理论上,碱性条件可以抑制甲烷的产生从而有利于电能输出,而且碱性废水是工业废水的重要组成部分。产电微生物如何将有机物代谢产生的电子传递到电极上一直以来是MFC研究的一个重要方向,因此,研究碱性条件下的微生物产电机制对MFC的电能输出与碱性废水的生物处理均有重要意义。中国科学院成都生物研究所应用与环境微生物中心李大平研究员课题组在微生物燃料电池的产电机制研究方面取得突破性进展。他们从污染环境中分离出一株嗜碱性假单胞菌(Pseudomonas alcaliphila),该菌株在碱性条件下能够分解有机物的同时产生电能,最佳pH为9.5。通过研究发现,该菌株在MFC体系中代谢有机物的同时产生吩嗪-1-羧酸介体(phenazine-1-carboxylic acid,PCA),该介体起电子穿梭的作用从而实现电子从有机物到电极的传递过程。
三、研究内容与方法:
1、微生物燃料电池的菌种群落的培养
产电细菌是微生物燃料电池的核心构件。产电细菌的电化学活性直接决定了微生物燃料电池的能量密度。而对于微生物燃料电池中的微生物, 不论是自身具有电化学活性,还是进行种间电子传递,对于它们构成的生物群落的研究刚刚开始。本项目将依托舟山地区得天独厚的自然地理环境和丰富的微生物群落,通过对海底沉积物的选取和以及细菌培养,以期能够发现新型产电细菌,提高海底微生物燃料电池的功率密度, 并研究其产电机理。
2、海洋沉积物微生物燃料电池系统的设计和优化
微生物燃料电池系统主要包括三个要素:阳极,阴极和膜。 由于海洋沉积物燃料电池工作于海水环境中,海水中含有高浓度的盐分,工作环境恶劣,这将对海洋沉积物燃料电池的构件提出了更高的要求。另外,微生物燃料电池的造价也会直接影响微生物燃料电池的实用化进程。在微生物燃料电池的使用中,一般使用氧气做电子受体,碳担载的贵金属纳米粒子(Pt)作为氧还原催化剂并用交换膜将微生物燃料电池的阳极和阴极隔开。贵金属催化剂的使用,提高了微生物燃料电池的成本,并且,海水中的氯离子会对Pt催化剂产生毒化作用,这将会造成微生物燃料电池的效率损失。因此,本项目将设计一种新型的微生物燃料电池系统,采用双极膜作为微生物燃料电池阴极与海水的分隔物,利用水离解产生的氢氧根和氢离子作为传输介质,隔绝海水中氯离子对阴极催化剂的毒化作用这是本项目的技术关键。
四、研究目标与结果
第一部分为对原有燃料电池的改造:本实验室原有燃料电池反应器多个,但是由于微生物燃料电池中微生物为厌氧性细菌,需要将燃料电池原有气室改造为适合微生物生长的密闭培养室。
第二部分为培育和优化产电菌种群落:本项目将分别从小黄蟒岛等具有代表性的岛屿处选出海底沉积物,在燃料电池细菌培养室内培养,启动并测试微生物燃料电池的功率密度,以期能够得到高功率,非硫还原的产电菌种。
第三部分为阴极催化剂研究:本项目将采用过渡金属碳化物为研究目标,制备出高催化活性的阴极催化剂。理论计算表明,过渡金属表面与氧结合能过大,使得由氧分子还原得到的氧原子脱附需要克服大的能量势垒,造成了氧还原过程中的极化损失,是过渡金属不能作为氧还原催化剂的关键。过渡金属中加入碳化物能够使得过渡金属的d电子带中心上移,降低氧与过渡金属表面的结合能,促进氧还原反应的加速进行。本项目使用过渡金属(Ni W等)盐与乙醇反应,生成有机过渡金属化合物胶体,然后加入尿素作为还原剂,在高温下反应生成过渡金属碳化物纳米粒子,作为微生物燃料电池阴极催化剂。
第四部分为海洋实际环境下微生物燃料电池系统设计和测试:本项目将实验二所优化的产电菌种接种至沉积物燃料电池阳极,然后将阳极放入至指定海底沉积物中。海洋沉积物微生物燃料电池阴极反应室将采用双极膜与海水隔开,阴极反应室内为酸性电解液。活化之后测试海洋实际环境下微生物燃料电池系统的功率、稳定性以及其它性能。
(发布:)