PNAS:影响脊柱椎骨数量发育的miRNA
《PNAS》发布美国哈佛大学医学院遗传学系一项研究发现,通过调控涉及脊椎动物胚胎模式形成与发育的Hox基因的表达,miR-196族的微RNA有助于控制小鼠脊柱的特性与数量。
由莫纳什大学欧洲分子生物学实验室(澳大利亚)的Edwina McGlinn带领的一个国际团队发现,去激活一小组micrornA(miRNA)分子,可使脊椎的不同部分扭曲变形。Hox基因对于确定椎骨模式是至关重要的,也在脊髓以及更广泛的神经系统中发挥重要的作用。但是,这些基因是如何被调节的,尚不清楚。
Edwina的研究小组,敲除了miRNA家族mir-196的分子。他们用荧光标记来照亮这些miRNA分子本来早就定位的细胞,并且在那里,miRNA有潜力控制几十到几千个基因的水平。这引发了许多基因的一个“传感效应”,其中最显著的是Hox基因。
一条分段的脊柱,是脊椎动物的一种定义性特征。不同的物种在它们脊柱的不同部位有不同的椎骨,例如,在它们的脖子(颈椎)中,中上背部(胸锥),或下背部(腰椎)。值得注意的是,同一物种的个体它们的脊柱几乎没有显示出变化。这表明,每种动物已经在其环境中适应了正确的脊椎骨数量和类型。
Edwina说:“我们发现,在脊柱形成过程中,有一种机制,控制着从脊柱一个区域到到另一个区域的正确过渡。”
这项研究结果,是McGlinn研究团队一个项目的一部分,旨在构建“脊椎动物早期胚胎中如何形成正确大小、形状和数量的骨骼”的更完整的路线图。这方面的知识将有助于我们对发育过程的基本理解,反过来这又可以帮助治疗一些疾病,以及应用于再生医学:例如,在某些形式的白血病中,改变了的Hox基因表达是重要的,因此,了解如何调节这些基因,是至关重要的。
Edwina说:“这项研究仍处于早期阶段,但是,在你将这些知识用于医疗或再生目的之前,你必须了解一个胚胎是如何形成的。”
原文链接:
Independent regulation of vertebral number and vertebral identity by microRNA-196 paralogs
原文摘要:
The Hox genes play a central role in patterning the embryonic anterior-to-posterior axis. An important function of Hox activity in vertebrates is the specification of different vertebral morphologies, with an additional role in axis elongation emerging. The miR-196 family of microRNAs (miRNAs) are predicted to extensively target Hox 3′ UTRs, although the full extent to which miR-196 regulates Hox expression dynamics and influences mammalian development remains to be elucidated. Here we used an extensive allelic series of mouse knockouts to show that the miR-196 family of miRNAs is essential both for properly patterning vertebral identity at different axial levels and for modulating the total number of vertebrae. All three miR-196 paralogs, 196a1, 196a2, and 196b, act redundantly to pattern the midthoracic region, whereas 196a2 and 196b have an additive role in controlling the number of rib-bearing vertebra and positioning of the sacrum. Independent of this, 196a1, 196a2, and 196b act redundantly to constrain total vertebral number. Loss of miR-196 leads to a collective up-regulation of numerous trunk Hox target genes with a concomitant delay in activation of caudal Hox genes, which are proposed to signal the end of axis extension. Additionally, we identified altered molecular signatures associated with the Wnt, Fgf, and Notch/segmentation pathways and demonstrate that miR-196 has the potential to regulate Wnt activity by multiple mechanisms. By feeding into, and thereby integrating, multiple genetic networks controlling vertebral number and identity, miR-196 is a critical player defining axial formulae.
doi: 10.1073/PNAS.1512655112
作者:Siew Fen Lisa Wong