PNAS:研究揭示植物抗旱机制

摘要 : 最近,美国内布拉斯加大学林肯分校(UNL)的生物学家发表的一项新研究,揭露了植物如何响应干旱的根源。相关研究结果发表在六月二十二日的《美国国家科学院院刊》(PNAS)。

最近,美国内布拉斯加大学林肯分校(UNL)的生物学家发表的一项新研究,揭露了植物如何响应干旱的根源。相关研究结果发表在六月二十二日的《美国国家科学院院刊》(PNAS)。

研究人员表明,拟南芥中的2个基因如果发生突变,会抑制植物的发育,并破坏使其免受干旱影响的防御机制。在这项研究中,UNL研究团队培育出拟南芥的一种“双突变”植株,来探讨这两个基因的共同作用。

作者发现,这两个突变可大大抑制植物的生长,并损害植物器官的功能。与具有其中一个缺陷基因或没有缺陷基因的植株相比,双突变植株也对干旱表现出更大的敏感性,枯萎地更快,更频繁地死亡。

本文第一作者、生物科学教授说:“从长远来看,我们想知道,我们是否会产生相反的效果——对挑战性环境条件更加耐受的植物。我认为这项基础研究,是朝向这个方向的必要一步。”

Cerutti带领的研究小组发现,双突变体的有害改变,是因为缺乏组蛋白中常见的相互作用,组蛋白是真核生物细胞核中与DNA结合存在的碱性蛋白质,DNA缠绕在组蛋白上,形成核小体。

生物学家认为,组蛋白有助于指示“编码在DNA的遗传指令,何时在一个生物体中被转录和表达”。最近的研究还表明,组蛋白修饰——包括磷酸化、磷酸盐分子的添加,可能有助于优化植物对环境线索的响应。

Cerutti和他的同事们发现,当暴露在一种模拟的干旱条件时,拟南芥会产生更高水平的磷酸化组蛋白。然而,这个磷酸化过程需要一种催化剂(称为激酶),将一个磷酸盐供体连接到组蛋白上,并开始接收它。

UNL研究人员确定,双突变体缺乏其中两种媒介激酶,从而导致低水平的磷酸化组蛋白,以及他们观察到的不良生长和干旱响应。

Cerutti说:“如果没有这两个基因和这两种激酶,对植物造成的后果是相当戏剧性的。如果我们希望修改它,以更好利用它们,我们就必须了解植物的作用机制。考虑到世界上发生的气候变化相关事件,我们认为,在未来进行这方面的研究,将是非常有意义的。”

原文标题:Osmotic stress induces phosphorylation of histone H3 at threonine 3 in pericentromeric regions of Arabidopsis thaliana

原文摘要:Abstract: Histone phosphorylation plays key roles in stress-induced transcriptional reprogramming in metazoans but its function(s) in land plants has remained relatively unexplored. Here we report that an Arabidopsis mutant defective in At3g03940 and At5g18190, encoding closely related Ser/Thr protein kinases, shows pleiotropic phenotypes including dwarfism and hypersensitivity to osmotic/salt stress. The double mutant has reduced global levels of phosphorylated histone H3 threonine 3 (H3T3ph), which are not enhanced, unlike the response in the wild type, by drought-like treatments. Genome-wide analyses revealed increased H3T3ph, slight enhancement in trimethylated histone H3 lysine 4 (H3K4me3), and a modest decrease in histone H3 occupancy in pericentromeric/knob regions of wild-type plants under osmotic stress. However, despite these changes in heterochromatin, transposons and repeats remained transcriptionally repressed. In contrast, this reorganization of heterochromatin was mostly absent in the double mutant, which exhibited lower H3T3ph levels in pericentromeric regions even under normal environmental conditions. Interestingly, within actively transcribed protein-coding genes, H3T3ph density was minimal in 5′ genic regions, coincidental with a peak of H3K4me3 accumulation. This pattern was not affected in the double mutant, implying the existence of additional H3T3 protein kinases in Arabidopsis. Our results suggest that At3g03940 and At5g18190 are involved in the phosphorylation of H3T3 in pericentromeric/knob regions and that this repressive epigenetic mark may be important for maintaining proper heterochromatic organization and, possibly, chromosome function(s).

作者:秩名

;