Genome Biology:南京农大发表棉花遗传育种研究文章

摘要 : 五月二十四日,南京农业大学一项棉花遗传育种研究成果,刊登在国际知名期刊《Genome Biology》。在这项研究中,研究人员利用新一代测序和SNP基因分型方法,构建了四倍体棉花的高密度遗传图谱,并表征了四倍体棉花基因组的结构变异。

棉花是重要的经济作物,也是纺织工业的主导原料,在世界及我国国民经济中占重要地位。随着植物基因组计划的不断发展,对作物进行分子设计和基因工程改良是21世纪植物科学领域中的重要课题。目前,国内外研究人员在棉花遗传育种工作中取得了一定的进展。

五月二十四日,南京农业大学作物遗传与种质创新国家重点实验室、教育部杂交棉创制工程研究中心一项棉花遗传育种研究成果,刊登在国际知名期刊《Genome Biology》,题为“Sequence-based ultra-dense genetic and physical maps reveal structural variations of allopolyploid cotton genomes”。在这项研究中,研究人员利用新一代测序和SNP基因分型方法,构建了四倍体棉花的高密度遗传图谱,并表征了四倍体棉花基因组的结构变异。

本论文通讯作者张天真教授,现任南京农业大学农学院副院长,“作物遗传与种质创新”国家重点实验室主任。其1992年在南京农大获遗传育种专业博士学位,曾在德国、美国从事博士后研究和高级访问学者,主要从事棉花基因组研究,曾获2003年国家科技进步二等奖。拥有国家授权专利4项。成功选育出南农系列转基因抗虫杂交棉和高优势杂交种,并在长江流域1500万亩棉区推广,产生经济效益30多亿元。在国际植物育种杂志Euphytica、Plant Breeding、美国的Crop science以及国内核心刊物上发表作物遗传育种论文80多篇。

SNPs(单核苷酸多态性)是最丰富的多态性类型,并已在许多作物基因组研究中进行过不断的探索,包括水稻和玉米。由于其复杂性和多倍体,异源四倍体棉花基因组的SNP研究,已经落后于其他作物。在这项研究中,研究人员采用新一代测序和有效的SNP基因分型方法,检测了多倍体棉花全基因组SNP,并用来构建连锁图谱和表征基因组的结构变化。

该研究小组构建了一幅高密度种间遗传图谱,包括4,999,048个SNP位点,不均匀地分布在26个异源四倍体棉花连锁群中,覆盖4,042 cM。研究小组通过对照组装草图序列和遗传图谱,在棉花基因组中确定了重组率和突变热点。利用这一图谱,研究人员通过将公共可用的雷蒙德氏棉(G. raimondii)基因组信息与荧光原位杂交分析相结合,确定了四倍体棉花的基因组重排和着丝粒区域。

总而言之,这项研究用测序后基因分型法,确定了陆地棉(G. hirsutum)和海岛棉(G. barbadense)之间上百万个SNPs。研究人员构建并利用一幅高密度SNP图谱,来纠正序列错误组装,将scaffolds合并成与染色体一致的pseudomolecules,检测基因组重排,并确定了异源四倍体棉花中的着丝粒区域。

该研究发现,四倍体棉花的着丝粒逆转录因子序列,来源于D亚基因组祖先,可能在异源四倍体形成之后侵入了A亚基因组着丝粒。本研究对于棉花的遗传研究和育种,提供了一份宝贵的基因组资源。

原文标题:Sequence-based ultra-dense genetic and physical maps reveal structural variations of allopolyploid cotton genomes.

原文摘要:Abstract:BACKGROUND: SNPs are the most abundant polymorphism type, and have been explored in many crop genomic studies, including rice and maize. SNP discovery in allotetraploid cotton genomes has lagged behind that of other crops due to their complexity and polyploidy. In this study, genome-wide SNPs are detected systematically using next-generation sequencing and efficient SNP genotyping methods, and used to construct a linkage map and characterize the structural variations in polyploid cotton genomes.

RESULTS: We construct an ultra-dense inter-specific genetic map comprising 4,999,048 SNP loci distributed unevenly in 26 allotetraploid cotton linkage groups and covering 4,042 cM. The map is used to order tetraploid cotton genome scaffolds for accurate assembly of G. hirsutum acc. TM-1. Recombination rates and hotspots are identified across the cotton genome by comparing the assembled draft sequence and the genetic map. Using this map, genome rearrangements and centromeric regions are identified in tetraploid cotton by combining information from the publicly-available G. raimondii genome with fluorescent in situ hybridization analysis.

CONCLUSIONS: We report the genotype-by-sequencing method used to identify millions of SNPs between G. hirsutum and G. barbadense. We construct and use an ultra-dense SNP map to correct sequence mis-assemblies, merge scaffolds into pseudomolecules corresponding to chromosomes, detect genome rearrangements, and identify centromeric regions in allotetraploid cottons. We find that the centromeric retro-element sequence of tetraploid cotton derived from the D subgenome progenitor might have invaded the A subgenome centromeres after allotetrapolyploid formation. This study serves as a valuable genomic resource for genetic research and breeding of cotton.

作者:秩名

;