PLOS Genetics:冷泉港实验室发现一种新方法可提高番茄产量

近日,冷泉港实验室的研究人员在商业丛生番茄植株研究中,揭示出杂种优势的一种遗传学机制。这一研究发现有助于番茄产量的提高。相关文章发表于2013年12月26日的《《PLOS genetics》杂志上。



PLOS Genetics:冷泉港实验室发现一种新方法可提高番茄产量

番茄商业用途

每一位园丁都知道熟透西红柿的外观。那鲜红的颜色,那温暖的泥土气息和甜而多汁的味道是难以抗拒的。但是,商业的番茄植株,跟庭院种植的品种具有迥然不同的外观,庭院种植番茄可以在适当的条件下不断地生长,直到变得又高又瘦。

番茄可被制成调味酱和果汁,商业种植番茄的植株,需要比传统番茄品种更早地停止生长,因此更像灌木丛状。而这些紧凑的丛生植物结构,也方便机械采收,生长的早期结束意味着,比起庭院种植的番茄,商业种植番茄的每一株会产生更少的果实。

如何提高番茄产量——杂种优势

但是,假如商业番茄种植者可以“诱骗”植物产生更多果实,而不牺牲这种独特而必需的植株丛生形状,将会怎么样?今天,冷泉港实验室(CSHL,Cold Spring Harbor Laboratory)的研究人员宣布,他们利用杂种优势这一种方法来实现这个目标。

杂种优势是植物育种的一个性能,从20世纪早期,育种人员就利用杂种优势来提高作物产量。研究人员发现,杂种优势背后隐藏的微妙之处,仅仅涉及一个基因。这为科学家们提供了一种手段,能够调整商业种植丛生番茄开花的时间长度。在这些植物中,较长的开花时间能够大幅提高果实的产量。

1908年,George Shull在CSHL首先发现了杂种优势。杂种优势(或heterosis),是指将遗传学上截然不同的两种植物进行杂交,产生各种性状均优于双亲的后代。几十年来,杂种优势被用来提高农业生产力,但是科学家们一直在争论,杂种优势是如何和为什么产生这种作用。

杂种优势遗传学机制揭示

CSHL副教授Zach Lippman和以色列的同事们,在他以前的研究中,发现了一个罕见的杂种优势例子,涉及到编码成花素(控制开花过程和花量的一种激素)的基因中的一个遗传缺陷。这个基因的突变,显著增加了商业种植丛生番茄的产量,由博士后研究员Ke Jiang带领的Lippman及其团队,开始去了解这种显著效果背后的机制。

他们发现,商业丛生番茄植株,如果在成花素基因的两个拷贝中的一个具有突变,仅产生无此突变番茄植株一半的成花素,这推迟了它们停止制造花的时间。反过来,这全面引起了更多的果实产量。Lippman解释说:“这是因为,商业丛生番茄品种,对成花素激素的数量或剂量高度敏感,这改变了植物结构——也就是说,有多少花可以在生长结束之前形成。这些发现引发一个令人兴奋的预测:也许有可能通过调整成花素的水平,更进一步来增加产量。”

研究意义

Lippman的团队也在另外一种植物拟南芥(ArABIdopsis,十字花科模式植物,是西兰花和菜花等作物的一种近亲植物)中,研究了成花素突变。他们在这种植物中,虽然没有看到相同的产量增加,但也观察到由成花素剂量敏感性引起的植物结构的相同变化。这些研究结果表明,也许有可能在各种各样的开花植物中,通过控制成花素来提高作物产量。

原文摘要:

Tomato Yield Heterosis Is Triggered by a Dosage Sensitivity of the Florigen Pathway That Fine-Tunes Shoot Architecture

Ke Jiang, Katie L. Liberatore, Soon Ju Park, John P. Alvarez, Zachary B. Lippman

The superiority of hybrids has long been exploited in agriculture, and although many models explaining “heterosis” have been put forth, direct empirical support is limited. Particularly elusive have been cases of heterozygosity for single gene mutations causing heterosis under a genetic model known as overdominance. In tomato (Solanum lycopersicum), plants carrying mutations in SINGLE FLOWER TRUSS (SFT) encoding the flowering hormone florigen are severely delayed in flowering, become extremely large, and produce few flowers and fruits, but when heterozygous, yields are dramatically increased. Curiously, this overdominance is evident only in the background of “determinate” plants, in which the continuous production of side shoots and inflorescences gradually halts due to a defect in the flowering repressor SELF PRUNING (SP). How sp facilitates sft overdominance is unclear, but is thought to relate to the opposing functions these genes have on flowering time and shoot architecture. We show thatsft mutant heterozygosity (sft/+) causes weak semi-dominant delays in flowering of both primary and side shoots. Using transcriptome sequencing of shoot meristems, we demonstrate that this delay begins before seedling meristems become reproductive, followed by delays in subsequent side shoot meristems that, in turn, postpone the arrest of shoot and inflorescence production. Reducing SFT levels in sp plants by artificial microRNAs recapitulates the dose-dependent modification of shoot and inflorescence production of sft/+ heterozygotes, confirming that fine-tuning levels of functional SFT transcripts provides a foundation for higher yields. Finally, we show that although flowering delays by florigen mutant heterozygosity are conserved in Arabidopsis, increased yield is not, likely because cyclical flowering is absent. We suggest sft heterozygosity triggers a yield improvement by optimizing plant architecture via its dosage response in the florigen pathway. Exploiting dosage sensitivity of florigen and its family members therefore provides a path to enhance productivity in other crops, but species-specific tuning will be required.

;