北大发现FAM3A激活PI3K-Akt信号通路调控肝脏葡萄糖和脂肪代谢
北京大学医学部的研究人员在新研究中表明,FAM3A在调控肝脏葡萄糖和脂类代谢中发挥了重要的作用,在肝脏中FAM3A通过一种Ca2+/CaM依赖性机制激活了PI3K-Akt信号通路。相关文章发表于《Hepatology》杂志上。
FAM3家族简介
FAM3(family with sequence similarity 3)家族是在2002年发现的一组新的细胞因子家族,共有4个家族成员:FAM3A、FAM3B、FAM3C和FAM3D,各编码一含224-235个氨基酸的多肽。研究显示FAM3家族不同于目前发现的任何已知因子。
FAM3B主要在胰腺中表达,已被证实在胰岛素抵抗和2型糖尿病发展过程中起重要作用,其可能成为2型糖尿病的新干预靶点。FAM3C被发现在胚胎发育和视网膜功能调控,上皮细胞间充质转化和胰腺癌发生过程中起重要作用。FAM3D被发现可能介入了机体能量代谢异常、结肠癌及嗜睡等疾病的发生发展过程。
这些结果表明FAM3基因家族成员可能在包括糖尿病和肿瘤在内的多种重大疾病发生发展过程中起重要作用。然而,目前尽管已知FAM3基因家族成员FAM3A广泛分布于机体各个组织,且主要是在血管内皮中表达,对于其生物学功能却仍不是很清楚。
FAM3生物学功能研究
研究人员发现db/db小鼠和高脂饮食(HFD)诱导的糖尿病小鼠肝脏中FAM3A的表达显著下降。而在肝脏中过表达FAM3A则可显著减轻这些小鼠肝脏中的高血糖、胰岛素抵抗和脂肪生成。与之相反,当研究人员采用sirna介导抑制肝脏FAM3A时,证实其可导致C57BL/6小鼠肝脏中高血糖,pAkt水平下降,糖异生和脂肪生成增高。
体外研究揭示,FAM3A主要定位在培养肝细胞的线粒体中,在那里它促进了ATP生成和分泌。进一步的机制研究表明,FAM3A是以一种胰岛素非依赖性方式通过PI3K的p110α催化亚基激活了Akt。阻断ATP受体:P2受体或是它下游的PLC和IP3R,以及除去钙介质均可显著减少FAM3A诱导的细胞溶质游离Ca2+水平增高,抑制FAM3A介导的PI3K/Akt激活。并且,研究人员证实抑制钙调蛋白(CaM)可完全破坏FAM3A诱导的Akt激活。
结果表明,FAM3A在调控肝脏葡萄糖和脂类代谢中发挥了重要的作用,在肝脏中FAM3A通过一种Ca2+/CaM依赖性机制激活了PI3K-Akt信号通路。上调肝脏FAM3A表达有可能是治疗胰岛素抵抗、2型糖尿病和非酒精性脂肪肝(NAFLD)的一种潜在方法。
作者简介:
北京大学医学部生理与病理生理学系的管又飞(Youfei Guan)教授和杨吉春(Jichun Yang)博士是这篇论文的共同通讯作者。前者课题方向主要集中在用转基因、基因打靶和疾病动物模型研究前列腺素及其受体以及代谢性核受体在糖尿病、高血压、脂质代谢紊乱、肥胖及相关肾脏并发症发病及治疗中的作用。后者长期从事β细胞胰岛素分泌障碍及肝脏糖脂代谢异常在2型糖尿病病理生理过程中的作用研究。
原文摘要:
FAM3A activates PI3K p110α/Akt signaling to ameliorate hepatic gluconeogenesis and lipogenesis
Chunjiong Wang, Yujing Chi, Jing Li,Yifei Miao, Sha Li, Wen Su, Shi Jia,Zhenzhen Chen, Shengnan Du, Xiaoyan Zhang, Yunfeng Zhou, Wenhan Wu, Mingyan Zhu,Zhiwei Wang, Huaqian Yang, Guoheng Xu,Shiqiang Wang, Jichun Yang, Youfei Guan
FAM3A belongs to a novel cytokine-like gene family, and its physiological role remains largely unknown. In our study, we found a marked reduction of FAM3A expression in the livers of db/db and high-fat diet (HFD)-induced diabetic mice. Hepatic overexpression of FAM3A markedly attenuated hyperglycemia, insulin resistance and fatty liver with increased Akt (pAkt) signaling and repressed gluconeogenesis and lipogenesis in the livers of those mice. In contrast, siRNA-mediated knockdown of hepatic FAM3A resulted in hyperglycemia with reduced pAkt levels and increased gluconeogenesis and lipogenesis in the livers of C57BL/6 mice. In vitro study revealed that FAM3A was mainly localized in the mitochondria, where it increases ATP production and secretion in cultured hepatocytes. FAM3A activated Akt through the p110α catalytic subunit of PI3K in an insulin-independent manner. Blockage of ATP receptor P2 receptor or its downstream PLC and IP3R and removal of medium calcium all significantly reduced FAM3A-induced increase in cytosolic free Ca2+ levels and attenuated FAM3A-mediated PI3K/Akt activation. Moreover, FAM3A-induced Akt activation was completely abolished by the inhibition of calmodulin (CaM). Conclusion: FAM3A plays crucial roles in the regulation of glucose and lipid metabolism in the liver where it activates the PI3K-Akt signaling pathway via a Ca2+/CaM-dependent mechanism. Upregulating hepatic FAM3A expression may represent an attractive means for the treatment of insulin resistance, type 2 diabetes and NAFLD.